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Abstract

In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material plane under anti-plane
shear waves is investigated by using the non-local theory for impermeable crack face conditions. For
overcoming the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-di-
mensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near
the crack tips. By using the Fourier transform, the problem can be solved with the help of two pairs of dual
integral equations. These equations are solved using the Schmidt method. Contrary to the classical elasticity
solution, it is found that no stress and electric displacement singularity is present near the crack tip. The
non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture
criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends
on the crack length, the circular frequency of incident wave and the lattice parameter. For comparison
results between the non-local theory and the local theory for this problem, the same problem in the pi-
ezoelectric materials is also solved by using local theory. © 2001 Elsevier Science Ltd. All rights re-
served.
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1. Introduction

It is well known that piezoelectric materials produce an electric field when deformed, and
undergo deformation when subjected to an electric field. The coupling nature of piezoelectric
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materials has attracted wide applications in electric-mechanical and electric devices, such as
electric-mechanical actuators, sensors and structures. When subjected to mechanical and
electrical loads in service, these piezoelectric materials can fail prematurely due to their brittleness
and presence of defects or flaws produced during their manufacturing process. Therefore, it
is important to study the electro-elastic interaction and fracture behavior of piezoelectric
materials.

Many studies have been made on the electro-clastic fracture mechanics based on the
modeling and analyzing of one crack in the piezoelectric materials (see, for example,
[3,12,18,19,22,23,25,29, 30,32,33]). The problem of the interacting fields among multiple cracks
in a piezoelectric material has been studied by Han [14]. In Han’s paper, the crack is treated as
continuously distributed dislocations with the density function to be determined according to
the conditions of external loads and crack surface. Most recently, Chen and Karihaloo [2]
considered an infinite piezoelectric ceramic with impermeable crack-face boundary condition
under arbitrary electro-mechanical impact. Sosa and Khutoryansky [26] investigated the re-
sponse of piezoelectric bodies disturbed by internal electric sources. The impermeable
boundary condition on the crack surface was widely used in the works [2,22,23,28,29].
However, these solutions contain stress and electric displacement singularity. This is not rea-
sonable according to the physical nature. For overcoming the stress singularity in the classical
elastic theory, Eringen [6,8,9] used the non-local theory to discuss the state of stress near the
tip of a sharp line crack in an elastic plane subject to uniform tension, shear and anti-plane
shear. Zhou [34-37] used the non-local theory to study the state of the dynamic stress near the
tip of a line crack or two line cracks in an elastic plane. These solutions did not contain any
stress singularity, thus resolving a fundamental problem that persisted over many years. This
enables us to employ the maximum stress hypothesis to deal with fracture problems in a
natural way.

In the present paper, the scattering of harmonic elastic anti-plane shear waves by a Griffith
impermeable crack subjects to anti-plane shear in piezoelectric materials is investigated by
using the non-local theory. The traditional concept of linear elastic fracture mechanics and the
non-local theory are extended to include the piezoelectric effects. For overcoming the math-
ematical difficulties, one-dimensional non-local kernel function is used instead of two-dimen-
sional kernel function for the anti-plane dynamic problem to obtain the stress and electric
displacement occur at the crack tips. For obtaining the theoretical solution and discussing the
probability of using the non-local theory to solve the dynamic fracture problem in the pi-
ezoelectric materials, one has to accept some assumptions as Nowinski’s [20,21]. Certainly, the
assumption should be further investigated to satisfy the realistic condition. Fourier transform
is applied and a mixed boundary value problem is reduced to two pairs of dual integral
equations. In solving the dual integral equations, the crack surface displacement and electric
potential are expanded in a series of Jacobi polynomials. This process is quite different from
that adopted in previous works [3,6,8,9,12,14,22,23,25,29,30,32,33]. As expected, the solution
in this paper does not contain the stress and electric displacement singularity at the crack tip,
thus clearly indicating the physical nature of the problem, namely, in the vicinity of the
geometrical discontinuities in the body, the non-local intermolecular forces are dominant. For
such problems, therefore, one must resort to theories incorporating non-local effects, at least in
the neighborhood of the discontinuities.
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2. Basic equations of non-local piezoelectric materials

For the anti-plane shear problem, the basic equations of linear, homogeneous, isotropic, non-
local piezoelectric materials, with vanishing body force are (see e.g. [9,24,34,37]):

Ot.. 01 *w

x> oy Por ()
= 2)
(X, = [ Wl = XDwalX0) + €l (X = XDBL X1V (k=) 3)
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where the only difference from classical elastic theory and the piezoelectric theory is in the stress
and the electric displacement constitutive equations (3) and (4) in which the stress 7.;(X, ¢) and the
electric displacement D;(X,¢) at a point X depends on w,(X,¢) and ¢ ,(X,¢), at all points of
the body. w and ¢ are the mechanical displacement and electric potential. p is the mass density of
the piezoelectric materials. For homogeneous and isotropic piezoelectric materials there exist only
three material parameters, ¢, (|X’ — X|), e|s(JX’ — X|) and &, (|]X’ — X|) which are functions of the
distance |[X’ — X|. The integrals in Eqgs. (3) and (4) are over the volume V of the body enclosed
within a surface 0. As discussed in the papers (see e.g. [5,7]), it can be assumed in the form of
(X' — X)), e5(|1X" — X|) and €}, (|X’ — X|) for which the dispersion curves of plane elastic waves
coincide with those known in lattice dynamics. Among several possible curves the following has
been found to be very useful:

(Char €50 €11) = (cans ers, enn)o(|J X" — X)), (5)

where o(|X’ — X|) is known as the influence function, and is the functions of the distance |[X' — X/|.
cus, €15, €11 are the shear modulus, piezoelectric coefficient and dielectric parameter, respectively.
Substitution of Eq. (5) into Egs. (3) and (4) yields

(X, f) = /V 2(IX — Xor (X', )dV(X) (k= x,v), (6)

Di(X,t) = /V“(|X' - X)X, ) dV (X))  (k=x,y), (7)
where

Oz = Caq Wy + €15¢7k7 (8)

Dy =eis wi — 119 9)

Expressions (8) and (9) are the classical constitutive equations.
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3. The crack model

It is assumed that there is a Griffith crack of length 2/ along the x-axis in a piezoelectric material
plane as shown in Fig. 1. Let w be the circular frequency of the incident wave. —1, is a magnitude
of the incident wave. In what follows, the time dependence of all field quantities assumed to be of
the form e~ will be suppressed but understood. It is further supposed that the two faces of the
crack do not come in contact during vibrations. The piezoelectric boundary-value problem for
anti-plane shear is considerably simplified if we consider only the out-of-plane displacement and
the in-plane electric fields. When the cracks are subjected to the harmonic elastic waves and a
constant electric displacement D,, = —D, as discussed by Srivastava [27], Yu [31] and Eringen [9]
papers, the boundary conditions on the crack faces at y = 0 are (in this paper, we just consider the
perturbation stress field and the perturbation electric displacement field):

T,.(x,0,¢) = =19, |x| </, (10)
D,(x,0,t) = =Dy, |x| </, (11)
w(x,0,7) = ¢(x,0,6) =0, |x| > 1, (12)
w(x, y, 1) = p(x,y,0) =0 for (& +)*)"? = oo (13)

Substituting Egs. (6) and (7) into Eqgs. (1) and (2), respectively, using Green—Gauss theorem, it can
be obtained (see e.g. [9]):

[ [ =51 =D [eaa¥uie 1) + 5T )] vy
V

! / ’ ’ 0°w
- OC(‘X _x’ao)layZ(anJ)ldx :p¥7 (14>

1

/ / all¥ — x|, [y — ) [ers V(o 1) — e V(o 1)) d'dyf
14

_ / (¥ = ], DL 0.0 =0, (15)

where the boldface bracket indicates a jump at the crack line. V> = 8?/0x? + 0%/0y? is the two-
dimensional Laplace operator. Because of the assumed symmetry in geometry and loading, it is

Fig. 1. Crack in a piezoelectric material body.
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sufficient to consider the problem for 0 <x < oo, 0 <y < oo only. Under the applied anti-plane
shear load on the unopened surfaces of the crack, the displacement field and the electric dis-
placement possess the following symmetry regulations:

W(X, =Y, l) = —W(X,y, t)a ¢(X, _y7t) - —¢(X,y, t)' (16)

Using Eq. (16), we find that

[0,-(x,0,)}=0, (17)
[D;(x,0,)]= 0. (18)

Hence the line integrals in Egs. (14) and (15) vanish. By taking the Fourier transform of (14) and
(15) with respect to x/, it can be shown that

> _ , _dzﬂ/’(s,yl,t) _ i dzq;(say,)t) n / /

/0 a(]sl, [y —y\){m T—SZW(SJJ) +es T—S%(SJJ) dy
— —pat, (19)
% , [ d% 5,9t o, d*¢(s, v, ¢ - ,

/0 a(Jsl, |y —y\){els %—szvv(s,y?t)] —slll%ﬂzﬂs,yﬂ)”dy
—0. (20)

Here a superposed bar indicates the Fourier transform, e.g.
Fo) = [ sy explisn) d.
0

What now remains is to solve the integrodifferential equations (19) and (20) for the function w and
¢. It seems obvious that a rigorous solution of such a problem encounters serious if not unsur-
mountable mathematical difficulties, and one has to resort to an approximate procedure. In the
given problem, according to the Nowinski’s [20,21] papers, the appropriate numerical procedure
seems to follow naturally from the hypothesis of the attenuating neighborhood underlying the
theory of non-local continua. According to this hypothesis, the influence of the particle of the
body, on the thermoelectric state at the particle under observation, subsides rather rapidly with an
increasing distance from particle. In the classical theory, the function that characterizes the
particle interactions is the Dirac delta function since in this theory the actions are assumed to have
a zero range. In non-local theories the intermolecular forces may be represented by a variety of
functions as long as their values decrease rapidly with the distance. In the present study, as
adequate functions it was decided to select the terms, 6,() —y), n=1,2,..., of the so-called
o-sequences. A o-sequence, as generally known, converges to the (in the present case a one-
dimensional) Dirac delta function, 6(y' — y). With respect to the terms of the adopted delta
sequence, it was accepted the following simplifying assumptions: (See [20,21]. Nowinski had
solved several non-local problems by using assumption of this kind.)
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(a) For a sufficiently large j (as compared with the sphere of interactions of the particles), it is
permissible to make the replacement

[ 1w -0~ [ rone0 - @)

(b) As a consequence, the terms d,() — y),n))1, acquire the shifting property of the Dirac func-
tion,

[ 100,00 =0y ~ 10, (22)

The influence function was sought in the separable form. So according to the above discussion,
the non-local interaction in y direction can be ignored. In view of our assumptions, it can be
given

a(ls], [y = vI) = ()5, — ). (23)

From Eqgs. (19) and (20), it can be shown that

g ]

&O(S){CM [%y’f”) _ s, 0| +eis| 8 ‘7’((15’2y ) _ 245, t)] } — —po’w, (24)
d%i 'dz T -

[% — (s, t>] o | TEE s2¢<s,y>] ~o. (25)

Because of symmetry, it suffices to consider the problem in the first quadrant only. The solution
of Egs. (24) and (25) does not present difficulties, it can be written as follows, respectively
(v=0):

w(x,y,t) = 2 /o A(s)e 7 cos(xs)ds, p(x,y,1) — %w(x,y, t) = 2 /o B(s)e ™ cos(xs)ds,

Y Y

(26)

where 7% = s — w?/y(s), ¢ = pu/p,u = cay + % A(s),B(s) are to be determined from the
boundary conditions.
According to the boundary conditions (10)—(12), it can be obtained

€11

% / oco(s)yA(s)cos(sx)ds:%<10+615D "), x| <1, (27)
0

2 / " A(s) cos(sx)ds = 0, |x| > 1 (28)

T
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and
2 / 0 (s)sB(s) cos(sx)ds = — 20 x| <1, (29)
T Jo €11
g/ B(s)cos(sx)ds =0, |x| > /. (30)
T Jo

Egs. (27)—(30) are the dual integral equations of this problem.

4. Solution of the dual integral equation

The non-local function o will depend on a characteristic length ratio a//, where «a is an internal
characteristic length (e.g., lattice parameter, granular distance. In this paper, a represents lattice
parameter.) and / is an external characteristic length (e.g., crack length, wave-length. In this paper,
[ represents the crack length). By matching the dispersion curves of plane waves with those of
atomic lattice dynamics (or experiments), we can determine the non-local modulus function « for
given material.Here, the only difference between the classical and non-local equations is in the
introduction of the function d(s), it is logical to utilize the classical solution to convert the system
Egs. (27)-(30) to an integral equation of the second kind which is generally better behaved. If
%(s) = 1 (the classical elastic case), Egs. (27)—(30) reduce to the dual integral equations for the
same problem in classical elasticity. Of course, the dual integral equations (27)-(30) can be
considered to be a single integral equation of the first kind with a discontinuous kernel [8]. It is
well known in the literature that integral equations of the first kind are generally ill-posed in the
sense of Hadamard, e.g. small perturbations of the data can yield arbitrarily large changes in the
solution. This makes the numerical solution of such equations quite difficult. In this paper,
Schmidt method [17] was used to overcome the difficulty. As discussed by Eringen’s [6,8—10] and
Nowinski’s [20,21] papers, it was taken

20 = 1000 (= (B/a)' (¥ = x)°), (31)
Yo = ﬁ/aﬁv (32)

where [ is a constant (here f§ is a constant appropriate to each material.). a is the lattice parameter.
So it can be obtained

do(s) = exp ((— (sa)’/(2)") (33)
and %,(s) = 1 for the limit ¢ — 0, so that Egs. (27)—(30) reduce to the well-known equation of the

classical theory. Here the Schmidt method can be used to solve the dual integral equations (27)—
(30). The displacement w and the electric potential ¢ can be represented by the following series:

.X'Z 1/2
w(x,0,1) Z le/z( )(1—17) for —I<x</, y=0, (34)

w(x,0,¢) =0 for |x| > 1, y=0, (35)
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2

1/2
6 (x,0,1) pr”””( )(1-%) for —I<x<1l, y=0, (36)

¢(x,0,¢) =0 for |x| >1, y=0, (37)

where a, and b, are unknown coefficients to be determined and P{!/>!/?)(x) is a Jacobi polynomial
[13]. The Fourier transformation of Egs. (34) and (36) is [4]

A(s) = w(s,0,1) ZanB Jz,, 1(s1), (38)
B(s) = ¢(s,0,1) — g—ifw 5,0,1) i( an>Bn 1J2H(sl), (39)

w1 I'2n—(1/2))

B, =2/n(—1) o (40)

where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.
Substituting Egs. (38) and (39) into Egs. (27)—(30), respectively, Egs. (28) and (30) can be

automatically satisfied, respectively. Then the remaining equations (27) and (29) reduce to the
form, respectively.

Za,, n/ Jz,, 1(sl)cos(sx)dS—Z—T;ro(1+i), (41)

i <b _ Ean>3 /0 N %o(8)Jan_1(s1) cos(sx) ds = _’2%, (42)

n=1 é1

where 1 = (e;5Dy)/e1170. For large s, the integrands of Eqgs. (41) and (42) almost decrease expo-
nentially. So that they can be evaluated numerically by Filon’s method (see e.g. [1]). Egs. (41) and
(42) can now be solved for the coefficients a, and b, by the Schmidt method [17]. For a = 0, then
% (s) = 1 and Egs. (41) and (42) reduce to the form of the same problem in classical piezoelectric
materials. For brevity, Eq. (41) can be rewritten as (Eq. (42) can be solved by using a similar
method):

-l <x<I, (43)

(¢
S
&
=

I
p
)

n=1

where E,(x) and U(x) are known functions and coefficients @, are to be determined. A set of
functions P,(x) which satisfy the orthogonality condition

/ le(X)Pn(x)dx = NyOpn, N, = / lp,f(x) dx (44)

i



Z.-G. Zhou, B. Wang | International Journal of Engineering Science 40 (2002) 303-317 311

can be constructed from the function, E,(x), such that

R = e ), (45)

where M;; is the cofactor of the element d;; of D,, which is defined as

d11>d127 d137 CR 7d1n
d217d22a d23, e 7d2n
d317d327 d33) LRI )d3n

_dn17dn27dn37 cee >dnn_

Using Eqgs. (43)—(46), we obtain

= M, .. 1/
w=3 0y Wiy =y / U@ ds (47)

5. Numerical calculations and discussion

From the references (see e.g. [15,16,35,36]), it can be seen that the Schmidt method is performed
satisfactorily if the first ten terms of infinite series to Eq. (43) are retained. The behavior of the
maximum dynamic stress stays steady with the increasing number in terms in Eq. (43). Although
we can determine the entire dynamic stress field and the electric displacement from coefficients a,
and b,, it is important in fracture mechanics to determine the dynamic stress 7, and the electric
displacement D, in the vicinity of the crack tips. 7,. and D, along the crack line can be expressed
respectively as

n=1
+e15<b,, —?an>3n / o (5)J2n_1 (1) cos(xs) ds |, (48)
1 0
2 & i
D,(x,0,t) = - Z(elSa,, — snbn)B,,/ oo (8)J2n—1(s1) cos(xs) ds. (49)
n=1 0

For a = 0 at x =/, we have the classical stress and electric displacement singularity. However, so
long as a # 0, the semi-infinite integration and the series in Egs. (48) and (49) are convergent for
any variable x. Eqgs. (48) and (49) give a finite stress all along y = 0, so there is no stress and
electric displacement singularity at the crack tips. At —/ <x < [, 1,./7y and D, /D, are very close
to unity, and for x > /, 1,,/7y and D, /D, possess finite values diminishing from a finite value at
x =1 to zero at x = oo. Since a/2f1 > 1/100 represents a crack length of less than 100 atomic
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distances as stated by Eringen [9], and such submicroscopic sizes other serious questions arise
regarding the interatomic arrangements and force laws, we do not pursue solutions valid at such
small crack sizes. The semi-infinite numerical integrals, which occur, are evaluated easily by
Filon’s method (see e.g. [1]) and Simpson methods because of the rapid diminution of the in-
tegrands. In all computation, the material constants are not considered except the incident wave
frequency, the wave velocity, the crack length and the lattice parameter in this paper. This is
because the stress fields do not depend on the material constants. Due to the complexity of the
integrands of Eqgs. (48) and (49), the stress along the crack face has a slight variation. The results
are plotted in Figs. 2-13. In Figs. 8-10, 12 and 13, t,., g,., D, and D express the non-local stress,
the local stress, the non-local electric displacement and the local electric displacement, respec-
tively.

The following observations are very significant:

(1) The maximum stress does not occur at the crack tip, but slightly away from it. This phenom-

enon has been thoroughly substantiated by Eringen [11]. The maximum stress is finite. The dis-

tance between the crack tip and the maximum stress point is very small, and it depends on the

crack length and the lattice parameter. Contrary to the classical piezoelectric theory solution, it

is found that no stress and electric displacement singularity is present at the crack tip, and the

present results converge to the classical ones at the points far away from the crack tip as shown

in Figs. 8-13.

(i) The dynamic stress and the electric displacement at the crack tip become infinite as the

atomic distance a — 0. This is the classical continuum limit of square root singularity.

(iii) For the a/f = constant, viz., the atomic distance does not change, the value of the stress

and the electric displacement concentrations (at the crack tip) increase with the increase of

the crack length. Noting this fact, experiments indicate that the piezoelectric materials with

smaller cracks are more resistant to fracture than those with larger cracks.

(iv) The significance of this result is that the fracture criteria are unified at both the macroscopic

and microscopic scales, viz., it may solve the problem of any scale cracks.

(v) The present results will revert to the classical ones when the introduction function

o[ X" = X[) = o(]X" — X).

(vi) The dynamic stress concentration occurs at the crack tip as stated by Eringen [8,9], and this

is given by

204
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Fig. 2. The variation with w//c of the stress at the crack tips for a/2/ = 0.001.
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Fig. 3. The variation with w//c of the stress at the crack tips for a/2f/ = 0.003.
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Fig. 4. The variation with w//c of the stress at the crack tips for a/28/ = 0.005.
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Fig. 5. The variation with w//c of the stress at the crack tips for a/28/ = 0.007.
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Fig. 6. The variation with a/2f! of the stress at the crack tips for w!//c = 1.0.
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Fig. 7. The variation with a/2f! of the electric displacement at the crack tips.
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Fig. 9. The variation of the elastic displacement along the crack line for a/2$/ = 0.001.
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Fig. 10. The variation of the stress along the crack line for a/2/ = 0.005, w!/c = 0.0.
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Fig. 11. The variation of the elastic displacement along the crack line for a/2/ = 0.005.
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Fig. 12. The variation of the stress along the crack line for a/2/ = 0.005, w!/c = 1.0.
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Fig. 13. The variation of the stress along the crack line for a/28/ = 0.001, wl/c = 1.0.
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where ¢, represents the stress concentration value at tip of the crack. The ¢ is about equal to
co ~ 0.533. It is larger than the static stress concentration of the static non-local problem [9].
(vii) The dimensionless stress is found to be independent of the electric loads and the material
parameters. It just depends on the length of the crack, the lattice parameter, the circular



316 Z.-G. Zhou, B. Wang | International Journal of Engineering Science 40 (2002) 303-317

frequency of the incident wave and the wave velocity. However, the electric field is found to be
independent of the material parameters and the circular frequency of the incident wave and the
wave velocity. It just depends on the length of the crack, the lattice parameter.

(viii) The dynamic stress at the crack tips tends to increase with the frequency research a peak
and then to decrease in magnitude.

(ix) The dynamic stress and the dynamic electric displacement at the crack tips tend to decrease
with increasing a/2p1.

6. Conclusions

We developed an electro-elastic fracture mechanics theory and the non-local theory to deter-
mine the stress and electric fields near the crack tip for piezoelectric materials having a Griffith
crack under dynamic loading. The anti-plane electro-elastic problem of the piezoelectric materials
with a crack has been analyzed theoretically. The traditional concept of linear elastic fracture
mechanics and the non-local theory is extended to include the piezoelectric effects and the results
are expressed in terms of the stress and electric fields. The development method is applied to il-
lustrate the fundamental behavior of a crack in piezoelectric materials under dynamic loading.
Furthermore, the shear stress wave velocity of the piezoelectric materials and the frequency of the
incident wave upon the dynamic stress field of the crack are examined.
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